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The Relationship Between the Elastic Constants and 
the Instantaneous Normal Modes of Liquids I 

R. M. Strait-" 

In the solid st-ate tile elastic properties of a substance are related quil-e sinlply 
and directly to its phonon spectrum. However, while it is well-known that 
liqtlids possess certain macroscopic elastic properties, their relationship with an 
tinah/gotlS set of liquid pllonons is 1]_t1" more tentlotis. We show here that one 
candidate I~)r what one might cull the phonons of  a l iquid its instailtaneous 
ilOril~al rhodes has a very precise conllectiol l  with the liquid's high-17equency 
nlacroscopic elastic moduli.  This ct)nlleCl-ion suggests, illoreover, that there 
is at least some plane-wave-like character to tile short-l-ime, long-wavelength 
dynamics of liquids. 

KEY %V()RI)S: elastic constants; instantaneous ilornlal modes; liquids: 
phonons; short-time: sotind speed. 

1. INTRODUCTION 

The parallel notions that viscosity and elasticity are two different sides of 
the same phenomenon and that ordinary liquids have to behave elastically 
at short enough times were first made precise through the efforts of 
Maxwell in 1867 [ 1, 2]. Nearly a century later, Zwanzig and Mountain [3] 
succeeded in putting these compelling ideas on a firm molecular looting. 
By starting with the Green-Kubo time-correlation function expression 
tbr the frequency-dependent viscosity and taking the high-frequency limit, 
they were able to provide equilibrium statistical mechanical expressions 
for infinite-frequency elastic constants, emphasizing that there could be 
nothing intrinsically solid-like about the ability to sustain either shear or 
compressional waves, at least at sufficiently high frequencies. 

An alternative, and probably more natural, approach to the elastic 
properties of solids, however, relies strongly on the existence of phonons. 
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The fi'equency of a given lattice vibration depends on the stiffness of the 
lattice--its elastic moduli. Hence it is hardly a surprise that one can extract 
elastic constants from phonon dispersion relations [4] .  For an isotropic 
amorphous solid, for example, the frequencies co of the longitudinal (L) 
and transverse (T) phonons as a function of wavevector k, determine the 
longitudinal and transverse sound speeds cL and c'v. In particular, at long 
wavelengths, we can write for a neat amorphous material that 

COL. T ( k )  =CL .  T k  + . . .  (1) 

where the sound speeds are simply related to the elastic constants c~,  c~2, 
and c44, 

mpc~_ = c't l 

m p c  T = c44 

= c~2 -}- 2Ca4 
(2) 

with m the molecular mass and p the number density [4, 5]. Equivalent 
expressions are available in terms of the Lam+ coefficients 2 and lL or, 
equivalently, the bulk and shear moduli K and G: 

mpc~. = 2 + 2/L = K +  (4/3) G 

mpc~ =/L = G 
(3) 

One can also rewrite these formulas by taking advantage of the Cauchy 
(central-force) condition which relates these elastic coefficients in a solid 
[4] 

c~2 = c44 (or equivalently, 2 =/~ or K =  (5/3) G) (4) 

The infinite-frequency versions of these elastic constants which are 
suitable for a liquid differ from their solid-state counterpart by virtue of 
some purely ideal-gas (kinetic energy) contributions [3] .  However, if we 
define infinite-frequency excess elastic moduli 

A K _ , .  - K j. - ( 5 / 3 )  pkl~T 

AG~ - G  j. - p k B T  
(5) 

(with kl~ T Boltzmann's constant times the temperature), then a number of 
direct analogies are possible. Cauchy's condition, for example, becomes 

,dK~ =(5 /3)  AG~ + 2  zip (6) 

where z i p -  p - p k ~ 3  T is the corresponding excess in the pressure p. 
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From Zwanzig and Mountain's results [3] it is easy to show that 
these excess elastic constants can be written, for atomic fluids, in terms of 
simple integrals over the radial distribution function g(r) and derivatives of 
the interatomic pair potentials u(r), 

ziK~ = (1/18)p2 1 dr-~ g ( r ) [ tL ( r ) -  2tv(r)] 

ziG �9 = (1/30) p2 f dr 2 g(r)[ t L(r ) + 4tv(r) ] (7) 

tk-- u"(r), tx(r)=_u'(r)/r 

The question, though, is what connections can sensibly be made to 
phonons in a liquid setting. Unlike crystalline solids, there is no single, 
unambiguous way with which to define liquid phonons. There is no ideal 
crystal lattice about which to expand, nor is there any guarantee that long- 
lived, coherent, vibrational excitations with a well-defined wavevector will 
even exist in a liquid. Nonetheless, there have been numerous attempts at 
constructing liquid-state analogies with at least some of the features of 
crystalline phonons. With a few notable exceptions, however [6-17], these 
constructs have been prescriptions solely for characteristic liquid frequen- 
cies and not for specific molecular motions. Still, there have recently been 
two explicitly molecular approaches to liquid phonons that have begun to 
come under scrutiny: the instantaneous [15] and quenched [16] normal 
modes of liquids. (The differences and similarities between these formula- 
tions are explored in Ref 17.) In this paper, we describe the direct rela- 
tionship that exists between the precisely defined set of motions spelled out 
by the instantaneous normal modes [15] and the elastic behavior one 
would expect from a set of liquid phonons. In some sense, this work may 
also be viewed as a natural sequel to the previous explorations of the con- 
nection between the density fluctuations of liquids as a whole and liquid- 
state elastic properties [ 18-20]. 

2. I N S T A N T A N E O U S  N O R M A L  M O D E S  A N D  PLANE WAVES 

The idea behind instantaneous normal modes is that the matrix of 
second derivatives of the liquid's potential energy V evaluated at any 
instantaneous liquid configuration Ro 

(D)~,,~.,.-(O~V/Or#,Ork,.)a,, ( j , k =  1 ..... N ; l ~ , v = x ,  y ,z)  (8) 
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(with r/~, the p th  Cartesian coordinate of the j th  atom) contains informa- 
tion about the independent collective vibrational motions appropriate at 
that specific moment in time. Though there are a number of non-solid-like 
features to these vibrations [ 15, 21, 22], the equilibrium distribution of the 
eigenvectors, e~, of this matrix, along with the corresponding eigenvalues, 
meo2, (~=  1 ..... 3N lbr N atoms) have been shown to describe the sub- 
picosecond dynamics of liquids reasonably well nnder ordinary thermo- 
dynamic conditions [ 23-25 ]. 

The geometrical characteristics of these eigenvectors are only now 
starting to be understood [26]. However, one can always look, as with the 
mathematically analogous quantum problem, at the eigenvalues corre- 
sponding to some trial vector that one suspects ought to be physically 
appropriate. Suppose we assume that we have an atomic liquid, t"o1" each 
configuration of which we define the normalized 3N-dimensional plane- 
wave-like vectors e..( k ) 

[e:.(k)]/j =(N)  '-'eik~,(/{:.),, (9) 

where the polarization ;' is assumed to be in the longitudinal (L) or in one 
of the two equivalent transverse (T~, T~) directions as defined by three 
mutually perpendicular unit vectors k -  k/lk[, k~, and k2, 

f , , . -  k. f ,T,-  f,,, f,T, - 

The expectation value of the dynamical matrix, D, with these vectors, when 
averaged over liquid configurations, gives an immediate prediction for the 
eigenvalues that would arise with plane-wave-like instantaneous normal 
modes 

tacoS(k) = ( e;,(k)+ �9 D �9 e;.(k)) (7= L, T, ,  T2) (10) 

To be more specific, with the aid of the standard formulas tbr the 
elements of D in terms of the 3 x 3 potential-derivative tensor t [27], 

I --[t(rik)],,. ,., j~k  

D,~,.l-, = ~ E [t(ri/)],,.,., j=k 
k i ( i#= /1 

t(r)-- t f (r)  1 + [ t j ( r ) - -  tT(r) ] ~ 
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we can substitute Eqs. (8) and (9) into Eq. (10), letting us evaluate these 
eigenvalues in terms of the pair-potential derivatives 

' : - - /  . ) nco:(k) N I ~ [ 1 - - e  - ik ' ' r ,  ",)] k., . t(rii).k: 
i .  j i i # j )  

i 

=p J drg(r)(] -e -~"~)~r r ( r )+ ( f .  [tL(r)-- tT(r)]} 

When we then perform the angular parts of the integrations, we find that 
these frequencies prescribe a longitudinal and a (doubly degenerate) 
transverse branch for our INM spectrum, with the dispersion relations 
depending only on the magnitude k - ]k] of the wave vector. 

mco~(k)=p I drg(r)~t,(r)[1 - j , , (k r ) ]  + 2t dr) j2(kr)} ( l l )  

mco~.(k ) = p j dr g(r){t,(r)[  1 - j , , (k r ) ]  - t2(r) j2(kr)} (12) 

Here 

tt(r) = (1/3)[tL(r) + 2t-r(r)] -- (1/3) V~u(r) 
(13) 

t~(r) ------(1/3 )[tL(r) -- tv(r)]  =(1/3  ){ u " ( r ) -  [ u'(r)/r] ~ - J" 

and jo(x) and j : (x)  are spherical Bessel l\mctions [-28]. 
Though the connection with instantaneous normal modes has never 

been elucidated before, Eqs. (11) and (12) are extraordinarily familiar. 
They have been derived in the context of other, completely different, 
approximations for liquid phonons by Schofield [6] ,  by Zwanzig I-7-9], 
by Hubbard and Beeby [10, 11], and by Takeno and Goda [12-14].  
Moreover, the expressions for co L and co~. as defined here are the exact 
second moments of the longitudinal and transverse current correlation 
functions, respectively [29 ] - - so  even independently of any approximation, 
these quantities have already been widely recognized as plausible 
candidates for liquid phonon frequencies. Typical numerical results from 
these formulas are shown in Fig. 1. Experience has shown that the 
longitudinal curve, in particular, is reasonably accurate in predicting the 
location of the peak in the longitudinal current correlation function [29],  
itself commonly regarded as experimental indicator of phonon frequency 
1-30]. (Some more recent examples emphasizing the connection with solid- 
state phonons are given in Refs. 31 and 32. 

We are now in a position to deduce the instantaneous-normal-mode 
prediction for elastic properties just by generalizing Eq. (1) to its liquid- 
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state equivalent: Expanding co[ and co~- to leading order in k 2 allows us to 
identify two excess sound speeds, AcL and AcT, 

(OL.w(k) 2 = (ZJCL.T)  2 k 2 -it.- . . .  

= (1/30) p " dr r2g(r ) [3 tdr)  + 2IT(r}] III(AJCI } 2 (14) 

= ( 1/301 p f dr r2g(rl[t~ ( r )+  4tT(r} ] Ill( ZJCT )2 

When we further try to relate these sound speeds to the excess elastic 
moduli via the liquid-state generalization of Eq. (3), it turns out that we 
can actually do so - -and  relevant moduli are precisely the infinite-frequency 
moduli 

mp(AcL)Z=AK, +(4/3  AG, 
(151 

nip( ZlCTJ z = AG, 

given in Eq. (71. Thus the longest-wavelength instantaneous normal modes 
- - a t  least to the extent that the5, are genuinely plane-wave-like--are what 
determines the high-fi'equency limits of the macroscopic elastic moduli. 

. . . .  i . . . .  i . . . .  
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Fig. I. The plane-wave predictions Ibr ins tantaneous-normal-  
mode  dispersion relations in a liquid. Eqs. ( I 1 ) and { 12L The 
ar row labeled k i) indicates the (DebyeJ max imum wavcvcctor 
that would pertain if all 3N of the modes really were plane 
waves: (6 rc -~ lp= / ; i~  [19 .22] .  The calculations underlying 
t h e s e  curves are for a Lennard Jones liquid at a reduced den- 
sit5, /)a ~ = 0.8 and a reduced temperature  k n T,~: = I.(16 _+ 0.02, 
with the actual numerical ~alues shown here derived by scaling 
with parameters  appropr ia te  to liquid At ( a = 3 . 4 0 5 A .  c =  
119.8 K }. Thc necessary radial distribution function was com- 
puted via a 500-particle molecular  dynamics simulation. 
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3. C O N C L U D I N G  REMARKS 

The observation that a plane-wave picture of instantaneous normal 
modes leads to the exact infinite-frequency bulk and shear elastic constants 
for a liquid is a bit surprising. For one thing, there is no reason to expect 
instantaneous normal modes to be all that plane-wave-like in an environ- 
ment as disordered as a liquid. Certainly, at long enough wavelengths, 
liquids should resemble a featureless continuum in much the same way that 
amorphous  solids do, meaning that plane waves should presumably 
provide an accurate representation of small k excitations. On the other 
hand, D(co), the density of instantaneous normal modes, goes as co near 
co = 0 [27] ,  reflecting a significant excess of modes over the Debye co x 
dependence that one would have obtained if all of the modes were plane 
waves [33]. The vast majority of low co instantaneous normal modes in 
liquids are evidently not plane-wave-like. Still, the k = 0 limits of our trial 
vectors are, in fact, exact eigenvectors; the requirements of momentum con- 
servation imply that these three zero-frequency modes correspond to net 
translation of the entire system [ 34, 35 ]. What the findings here suggest is 
that this plane-wave character must survive at least to wavelengths long 
enough for an expansion in powers of k to be correct through order k z. To 
go beyond this order, we would no doubt have to allow formally for a dis- 
tribution of k values for each mode - - t ha t  is, we would have to incorporate 
matrix elements of the dynamical matrix off-diagonal in k [36]. 

The second noteworthy point is that the long-wavelength excitations 
that we do see end up being infinite-frequency excitations. It makes a great 
deal of sense that an instantaneous approach to a phonon spectrum should 
correlate with infinite-frequency behavior. But our observation is that the 
lowest-frequency instantaneous normal modes are what correlates with the 
particular infinite-frequency response we are singling out. The question 
therefore arises as to what, if anything, can be made of the modes that are 
slightly higher in frequency, corresponding, in this treatment, to slightly 
shorter wavelengths? It may very well be the case that there is some precise 
relationship between such modes and the viscosity of the liquid at finite k 
and co [ 3, 37]. If so, there may be a real connection to be explored between 
the elastic-continuum [38] and the fully microscopic instantaneous- 
normal-mode [23-25 ] theories lbr nonpolar  solvation. 

A C K N O W L E D G M E N T S  
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